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spectra showed (M + I)+ peaks at m/z 531, 499, and 515 for 10, 
11, and 12, respectively, with no appreciable, higher m/z values 
in any of the spectra. The molecular formulas were confirmed 
by high-resolution FAB mass spectra. 

Thus, we have accomplished the total synthesis of three rep­
resentative compounds which have a high degree of complexity 
(five N-heteroaromatic rings containing a total of eight nitrogens; 
ribosyl or deoxyribosyl groups on the appropriate nitrogens for 
cross-sectional analogy; and, pro forma, eight, six, or seven 
asymmetric carbons). The synthesis requires only three steps from 
ribo- or deoxyribonucleosides plus initial O-protection and final 
O-deprotection. The compounds represent respectively a covalently 
linked RNA cross section, l,9-di-(/3-D-ribofuranosyl)-3#-pyri-
mido[ 1 ",6": 1 ',2'] imidazo[4',5':4,5]imidazo[2,1 -/]purin-8(9//)-one 
(10); a covalently linked DNA cross section, l,9-bis-(2'-deoxy-
^-D-ribofuranosyl)-3H-pyrimido[l",6":l',2']imidazo[4',5':4,5]-
imidazo[2,l-i']purin-8(9//)-one (H);15 and a covalently linked 
DNA/RNA hybrid cross section, l-(2'-deoxy-/?-D-ribo-
furanosyl)-9-03-D-ribofuranosyl)-3#-pyrimido[l",6":l',2']-
imidazo[4',5':4,5]imidazo[2,l-f']purin-8(9i/)-one (12). These 
highly fluorescent molecules are worthy of further chemical and 
biological investigations. 
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The captodative free radical 3,5,5-trimethyl-2-oxomorpholin-
3-yl (1, TM-3) from bond homolysis of meso- and d/-bi(3,5,5-
trimethyl-2-oxomorpholin-3-yl) (2 and 3) is oxidized to 5,6-di-
hydro-3,5,5-trimethyl-l,4-oxazin-2-one (4) by molecular oxygen.2 

Because the oxomorpholinyls have pharmaceutical potential as 
mild one-electron reducing agents for in vivo manipulation of 
quinone antitumor drugs,3 we initiated a study of the mechanism 
of their oxidation by molecular oxygen including determination 
of the reduced oxygen species produced. Earlier studies of other 
redox reactions of TM-3 suggested that reduction occurred by 
single electron transfer.4 

Here we report that oxidation of TM-3 with molecular oxygen 
gives a quantitative yield of 4 and hydrogen peroxide at least in 
part via covalent bond formation and with the generation of a 
persistent aminyl radical. Quantitative or near quantitative (95 
± 5%) formation of 4 was observed for oxidation in chloroform, 
acetonitrile, ethanol containing 0.32 M magnesium perchlorate, 
and methanol solvents as indicated by UV and 1H NMR spec-
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troscopy. Quantitative formation of hydrogen peroxide, 1 equiv 
per radical dimer, was observed in the latter three media; the best 
yield in chloroform, where hydrogen peroxide was not stable, was 
58%. Hydrogen peroxide analyses were performed initially by 
HPLC/peroxychemiluminescence spectroscopy5 and subsequently 
by spectrophotometric analysis of the product of reaction with 
titanium tetrachloride.6 Oxidation of TM-3 dimer 2 or 3 followed 
first-order kinetics, monitoring formation of 4 spectrophoto-
metrically at its maximum, 320 nm. The rate constant was the 
rate constant for bond homolysis of 2 or 3;7 at 25.0 ± 0.1 0C, k 
= (3.1 ± 0.2) X 10"6 (2 in chloroform), (1.82 ± 0.004) X 10"5 

(2 in acetonitrile), (2.22 ± 0.01) X 10~3 (2 in ethanol containing 
0.32 M magnesium perchlorate), (2.38 ± 0.02) X 10~3 (2 in 
methanol), and (4.49 ± 0.03) X 10"3 s"1 (3 in methanol). TM-3 
also reacted with hydrogen peroxide with formation of oxazinone 
4, but the rate was more than 2 order of magnitude lower. 

The initial observation which indicated that oxidation of TM-3 
by molecular oxygen might involve covalent bond formation was 
the observation of a paramagnetic species giving a three-line 1:1:1 
EPR signal with g = 2.0060 and oN = 14 G and g = 2.0057 and 
a N = 15 G in air-saturated chloroform and ethanol containing 
0.32 M magnesium perchlorate solutions of radical dimers 2 or 
3, respectively; the 24-line signal characteristic of TM-3 was 
absent. With solutions of 2 at high concentration (e.g., 0.1 M), 
the three-line signal increased in intensity with time and then 
abruptly disappeared after a period approximately equal to the 
time necessary for reduction of at least 95% of the dissolved 
oxygen, calculated from the rate constant for bond homolysis and 
the solubility of oxygen which is in the range of 1.5 X 10 3 M.̂  
At this point the 24-line TM-3 EPR signal appeared. Shaking 
with air restored the three-line signal and destroyed the 24-line 
signal. The cycle could be repeated several times. The three-line 
EPR signal suggested the formation of either an aminyl or ni-
troxide bonded to unprotonated carbons. A nitroxide structure 
was eliminated because the EPR signal still appeared as a 1:1:1 
pattern with 80% enriched 17O2 as the oxidant. The hydrogen 
peroxide formed contained 17O, detected by using the hydrogen 
peroxide to oxidize 4-oxo-2,2,6,6-tetramethylpiperidine to its 
[17O] nitroxide and subsequent EPR analysis.910 

A mechanism for the oxidation of TM-3 with the intermediacy 
of aminyl 5 is shown in Scheme I. Two pathways to oxazinone 
4 and hydrogen peroxide are proposed because the rise in the 
concentration of 5 is not synchronous with the formation of 4 and 
hydrogen peroxide. The nonsynchronous behavior was observed 
when the oxidation was conducted with an excess of oxygen in 
ethanol containing 0.32 M magnesium perchlorate. In fact, under 
these conditions 5 could be easily observed even at low initial 
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concentration of radical dimer 2; magnesium cation stabilizes the 
aminyl radical analogous to its stabilization of TM-3." With 
an excess of oxygen, 5 reached its maximum concentration long 
after 99% of 2 had been oxidized to 4.12 At this point addition 
of 2 resulted in the rapid disappearance of the three-line EPR 
signal of 5 and the appearance of the 24-line signal of TM-3. 
Although peroxide 6 was not visible by 'H NMR, its formation 
is consistent with the formation of peroxides from reaction of 
triphenylmethyl with oxygen.13 

The reversibility of oxidation of 2 is proposed because reaction 
of oxazinone 4 with hydrogen peroxide gave a persistent radical 
showing a three-line EPR signal identical with the signal assigned 
to aminyl 5. The intensity of the signal was comparable to the 
intensity observed for the air oxidation of 2 at equivalent con­
centrations, and the same EPR signal was observed by using 
hydrogen peroxide labeled with 17O.14 Mixing of solutions 
containing equal concentrations of the persistent radical from 
oxidation of 2 with oxygen and reaction of hydrogen peroxide with 
4 gave a solution showing a single three-line EPR signal with the 
same intensity. Furthermore, freeze, pump, thaw degassing of 
solutions of aminyl 5 formed from 2 and oxygen after consumption 
of 2 increased the rate of disappearance of the aminyl EPR sig­
nal.12 The reversible formation of bis(triarylmethyl) peroxides 
has been established.15 

The reversibility of the oxidation of 2 was consistent with the 
relative maximum EPR signal intensities for 5 resulting from 
different initial concentrations of 2. The mechanism in Scheme 
I predicts that [5] = Kc[4] [H2O2]1/2 where K0 is a composite 
equilibrium constant. Solutions of 2, 0.06, 0.08, and 0.12 M, in 
ethanol containing 0.32 M magnesium perchlorate were reacted 
with oxygen to completion; the EPR signal heights were measured; 
and the resulting concentrations of 4 and hydrogen peroxide were 
determined. The measured and calculated relative signal intensities 
were 1:2.5:5.7 and 1:2.1:4.8, respectively. The signal intensity 
starting with 0.08 M 2 indicated that the maximum concentration 
of 5 was approximately 1 X 10"5 M by comparison with standard 
solutions of 4-oxo-2,2,6,6-tetramethylpiperidinoxy. 

The formation and persistence of 5 appears to be anomalous. 
Aminyl radicals are in general less persistent than 5 unless res­
onance stabilized, show g values in the range of 2.004-2.005 with 
aN = 12.5-16 G, and react with molecular oxygen.'6 The half-life 
of 2,2,6,6-tetramethylpiperidinyl at 24 0 C is less than 35 s.10 

Gas-phase N - H and O-H bond energies for simple secondary 
amines and hydrogen peroxide suggest that 7 =» 5 would be slightly 
endothermic.17 Possibly, intramolecular hydrogen bonding to the 
hydroperoxy functional group provides some additional stabili­
zation of 5 and gives rise to the high g value. 2-Aminophenoxy, 
o-semiquinones and -semidiones,18 and ?e/7-butyl(2-hydroxy-l-
phenylethyl)nitroxide19 have been shown to exhibit intramolecular 
hydrogen bonding. Although aminyl radicals generally react with 
oxygen to give nitroxides, an example which does not is 4-oxo-
2,2,6,6-tetramethylpiperidinyl.20 

In summary, we report evidence that oxidation of TM-3 with 
molecular oxygen yields stoichiometric quantities of hydrogen 
peroxide with generation of an unusually persistent aminyl radical. 
We have also found that other radicals of this type, including 
3,5-dimethyl-5-hydroxymethyl-2-oxomorpholin-3-yl,3 3,5,5-tri-
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methyl-2-oxopiperizin-3-yl,21 and the oligomers of the diradical 
bi(3,5,5-trimethyl-2-oxomorpholin-6-yl)-3,3'-diyl,22 produce 
persistent aminyl radicals upon exposure to air. The mechanism 
in Scheme I for oxidation of TM-3 is related to the mechanisms 
proposed for the air oxidation of dicyclohexylamine,23 indoles 
including tryptophan to kynurenine,24 tetrahydrofolate,25 and 
reduced flavins.26 
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A few Cu(II) aromatic1"5 and aliphatic6,7 thiolate complexes 
have been structurally characterized; most are transient species 
having varied decomposition pathways,8"1' some of which may 
be blocked. We have crystallized a CW-Cu11N2S2 complex7 ligated 
by a linked L-cysteine ester [-SCH2(CO2CH3)NHCH2-J2 (2); the 
parent Cu(cysteine)2 complex" and ternary Cu(cysteine) com­
plexes8"10 are quite unstable. We report here a novel Cu(II) 
thiolate redox reaction that yields a stable Cu(II)-alkyl persulfide 
complex and provides new structural and spectroscopic guideposts 
for mechanistic studies. 

In an attempt to prepare the mercaptoacetate analogue of 
Cu(tet-b)SCH2CH2C02 (3),6 ether was vapor diffused at 6 0C 
into a filtered solution of 0.5 mM Cu(tet-b)2+'2 1.3 mM KOH, 
and 0.65 mM HSCH2CO2H or its dicyclohexylamine salt12 in 8 
mL of methanol. Complex 1 crystallized as thin green plates in 
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